Wednesday, October 24, 2007

Quantitative PET imaging finds early determination of effectiveness of cancer treatment

PET imaging can demonstrate the effectiveness of cancer treatment.This imaging modality will reveal reduction in metabolism of cells killed by chemotherapeutic agents

K.S.Parthasarathy



Public release date: 23-Oct-2007

Contact: Maryann Verrillo
mverrillo@snm.org
703-652-6773
Society of Nuclear Medicine
Quantitative PET imaging finds early determination of effectiveness of cancer treatment
Visual analysis of PET Scans for non-Hodgkin lymphoma may be improved by using standardized uptake value in monitoring response to treatment, say researchers in October Journal of Nuclear Medicine

RESTON, Va.—With positron emission tomography (PET) imaging, seeing is believing: Evaluating a patient’s response to chemotherapy for non-Hodgkin lymphoma (NHL) typically involves visual interpretation of scans of cancer tumors. Researchers have found that measuring a quantitative index—one that reflects the reduction of metabolic activity after chemotherapy first begins—adds accurate information about patients’ responses to first-line chemotherapy, according to a study in the October issue of the Journal of Nuclear Medicine.

“In our study, we demonstrated that a quantitative assessment of therapeutic response for patients with diffuse large B-cell lymphoma (DLBCL) is more accurate than visual analysis alone when using the radiotracer FDG (fluorodeoxyglucose) with PET scans,” said Michel Meignan, professor of nuclear medicine at Henri Mondor Hospital in Creteil, France. “The ability to predict tumor response early in the course of treatment is very valuable clinically, allowing intensification of treatment in those patients who are unlikely to response to first-line chemotherapy,” he added. “Similarly, treatment could possibly be shortened in those patients who show a favorable response after one or two cycles of chemotherapy, and quantification also may help identify the disease’s transformation from low-grade to aggressive stage,” he explained. “However, visual interpretation of PET scans will always be the first step of analysis and will prevail in case of difficulties to quantify images,” added Meignan.

Diffuse large B-cell lymphoma is a fast-growing, aggressive form of non-Hodgkin lymphoma, a cancer of the body’s lymphatic system. Although there are more than 20 types of NHL, DLBCL is the most common type, making up about 30 percent of all lymphomas. In the United States, about 63,190 people are expected to be diagnosed with non-Hodgkin lymphoma in 2007, according to recent statistics.

Ninety-two patients with DLBCL were studied before and after two cycles of chemotherapy, and tumor response was assessed visually and by various quantitative parameters, explained the co-author of “Early 18F-FDG PET for Prediction of Prognosis in Patients With Diffuse Large B-Cell Lymphoma: SUV-Based Assessment Versus Visual Analysis.” Meignan said, “We found that quantification of tumor FDG uptake (the ratio of tissue radioactivity concentration) can markedly improve the accuracy of FDG PET for prediction of patient outcome.” Additional studies need to be done, said Meignan, reiterating that the future monitoring of cancer tumor response will probably include a combination of quantitative analysis and visual assessment.

PET is a powerful molecular imaging procedure that uses very small amounts of radioactive materials that are targeted to specific organs, bones or tissues. When PET is used to image cancer, a radiopharmaceutical (such as FDG, which includes both a sugar and a radionuclide) is injected into a patient. Cancer cells metabolize sugar at higher rates than normal cells, and the radiopharmaceutical is drawn in higher amounts to cancerous areas. PET scans show where FDG is by tracking the gamma rays given off by the radionuclide tagging the drug and producing three-dimensional images of their distribution within the body. PET scanning provides information about the body’s chemistry, metabolic activity and body function.

###

“Early 18F-FDG PET for Prediction of Prognosis in Patients With Diffuse Large B-Cell Lymphoma: SUV-Based Assessment Versus Visual Analysis” appears in the October issue of the Journal of Nuclear Medicine, which is published by SNM, the world’s largest molecular imaging and nuclear medicine society. Additional co-authors include Chieh Lin, Alain Luciani and Alain Rahmouni, Department of Radiology; Emmanuel Itti and Gaetano Paone, Department of Nuclear Medicine; and Corinne Haioun and Jehan Dupuis, Department of Hematology, all at Henri Mondor Hospital in Créteil, France; and Yolande Petegnief and Jean-Noël Talbot, Department of Nuclear Medicine, Tenon Hospital in Paris, France.

Credentialed press: To obtain a copy of this article—and online access to the Journal of Nuclear Medicine— please contact Maryann Verrillo by phone at (703) 652-6773 or send an e-mail to mverrillo@snm.org. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org. Print copies can be obtained by contacting the SNM Service Center, 1850 Samuel Morse Drive, Reston, VA 20190-5316; phone (800) 513-6853; e-mail servicecenter@snm.org; fax (703) 708-9015. A subscription to the journal is an SNM member benefit.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed journal in the field (Journal of Nuclear Medicine); host the premier annual meeting for medical imaging; sponsor research grants, fellowships and awards; and train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.; additional information can be found online at http://www.snm.org.

No comments: